Through a combined quantum mechanics/molecular mechanics (QM/MM) approach, we evaluate the photodynamics of the mono- and dithiolated azobenzenes when they are chemisorbed on a gold surface. The analysis of steric effects suggests that the presence of the surface influences the photoisomerization process of the chemisorbed monothiolated azobenzene. In particular, the trans → cis quantum yields decrease, and the nπ* state lifetimes become longer. The approach to the twisted conical intersection needed for the isomerization is hindered when the molecule is attached to a substrate because of the van der Waals interactions with the surface. For the cis isomer, the cis → trans photoisomerization quantum yield is almost unaffected, since this isomer is not flat, and thus the interaction with the surface is less remarkable. Dithiolated azobenzene can photoisomerize both trans → cis and cis → trans, also when doubly linked to the surface, preserving the two bonds with the gold atoms: the flexibility of the central azo-moiety enables the molecule to photoisomerize without any bond breaking. The quantum yields in this case are even higher than in the monothiolated case, probably because of the strained initial conformation, which must adapt to the available distances between the anchoring sites.

Can Azobenzene Photoisomerize When Chemisorbed on a Gold Surface? An Analysis of Steric Effects Based on Nonadiabatic Dynamics Simulations

GRANUCCI, GIOVANNI
;
PERSICO, MAURIZIO;
2015-01-01

Abstract

Through a combined quantum mechanics/molecular mechanics (QM/MM) approach, we evaluate the photodynamics of the mono- and dithiolated azobenzenes when they are chemisorbed on a gold surface. The analysis of steric effects suggests that the presence of the surface influences the photoisomerization process of the chemisorbed monothiolated azobenzene. In particular, the trans → cis quantum yields decrease, and the nπ* state lifetimes become longer. The approach to the twisted conical intersection needed for the isomerization is hindered when the molecule is attached to a substrate because of the van der Waals interactions with the surface. For the cis isomer, the cis → trans photoisomerization quantum yield is almost unaffected, since this isomer is not flat, and thus the interaction with the surface is less remarkable. Dithiolated azobenzene can photoisomerize both trans → cis and cis → trans, also when doubly linked to the surface, preserving the two bonds with the gold atoms: the flexibility of the central azo-moiety enables the molecule to photoisomerize without any bond breaking. The quantum yields in this case are even higher than in the monothiolated case, probably because of the strained initial conformation, which must adapt to the available distances between the anchoring sites.
2015
Benassi, Enrico; Granucci, Giovanni; Persico, Maurizio; Corni, Stefano
File in questo prodotto:
File Dimensione Formato  
azoenrico.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
jp511269p_si_001.pdf

accesso aperto

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 547.59 kB
Formato Adobe PDF
547.59 kB Adobe PDF Visualizza/Apri
azosurf_05.pdf

accesso aperto

Descrizione: Articolo principale + supporting information
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/759507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 22
social impact