In this paper we consider the numerical solution of fractional differential equations by means of m-step recursions. The construction of such formulas can be obtained in many ways. Here we study a technique based on the rational approximation of the generating functions of fractional backward differentiation formulas (FBDFs). Accurate approximations lead to the definition of methods which simulate the underlying FBDF, with important computational advantages. Numerical experiments are presented.

On the construction and properties of m-step methods for FDEs

ACETO, LIDIA
Primo
;
MAGHERINI, CECILIA;
2015-01-01

Abstract

In this paper we consider the numerical solution of fractional differential equations by means of m-step recursions. The construction of such formulas can be obtained in many ways. Here we study a technique based on the rational approximation of the generating functions of fractional backward differentiation formulas (FBDFs). Accurate approximations lead to the definition of methods which simulate the underlying FBDF, with important computational advantages. Numerical experiments are presented.
2015
Aceto, Lidia; Magherini, Cecilia; Novati, Paolo
File in questo prodotto:
File Dimensione Formato  
2015_SISC.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 496.7 kB
Formato Adobe PDF
496.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Novati_AM_sisc_II.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 541.28 kB
Formato Adobe PDF
541.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/760744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact