We provide a feasible generalized least squares estimator for (unrestricted) multivariate GARCH(1, 1) models. We show that the estimator is consistent and asymptotically normally distributed under mild assumptions. Unlike the (quasi) maximum likelihood method, the feasible GLS is considerably fast to implement and does not require any complex optimization routine. We present numerical experiments on simulated data showing the performance of the GLS estimator, and discuss the limitations of our approach. © 2014 Elsevier Inc.

Feasible generalized least squares estimation of multivariate GARCH(1, 1) models

POLONI, FEDERICO GIOVANNI;
2014-01-01

Abstract

We provide a feasible generalized least squares estimator for (unrestricted) multivariate GARCH(1, 1) models. We show that the estimator is consistent and asymptotically normally distributed under mild assumptions. Unlike the (quasi) maximum likelihood method, the feasible GLS is considerably fast to implement and does not require any complex optimization routine. We present numerical experiments on simulated data showing the performance of the GLS estimator, and discuss the limitations of our approach. © 2014 Elsevier Inc.
2014
Poloni, FEDERICO GIOVANNI; Sbrana, Giacomo
File in questo prodotto:
File Dimensione Formato  
PolS14_our.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 377.79 kB
Formato Adobe PDF
377.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/762787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact