Background. Parkinson's disease (PD) is mostly characterized by alpha-synuclein (SNCA) aggregation and loss of nigrostriatal dopamine-containing neurons. In this study a novel SNCA multiplication is described in two siblings affected by severe parkinsonism featuring early onset dyskinesia, psychiatric symptoms, and cognitive deterioration. Methods. SNCA dosage was performed using High-Density Comparative Genomic Hybridization Array (CGH-Array), Multiple Ligation Dependent Probe Amplification (MLPA), and Quantitative PCR (qPCR). Genetic analysis was associated with clinical evaluation. Results. Genetic analysis of siblings showed for the first time a 351 Kb triplication containing SNCA gene along with 6 exons of MMRN1 gene in 4q22.1 and a duplication of 1,29 Mb of a genomic region flanking the triplication. Conclusions. The identification of this family indicates a novel mechanism of SNCA gene multiplication, which confirms the genomic instability in this region and provides data on the genotype-phenotype correlation in PD patients.

Four Copies of SNCA Responsible for Autosomal Dominant Parkinson's Disease in Two Italian Siblings

FORNAI, FRANCESCO;
2015-01-01

Abstract

Background. Parkinson's disease (PD) is mostly characterized by alpha-synuclein (SNCA) aggregation and loss of nigrostriatal dopamine-containing neurons. In this study a novel SNCA multiplication is described in two siblings affected by severe parkinsonism featuring early onset dyskinesia, psychiatric symptoms, and cognitive deterioration. Methods. SNCA dosage was performed using High-Density Comparative Genomic Hybridization Array (CGH-Array), Multiple Ligation Dependent Probe Amplification (MLPA), and Quantitative PCR (qPCR). Genetic analysis was associated with clinical evaluation. Results. Genetic analysis of siblings showed for the first time a 351 Kb triplication containing SNCA gene along with 6 exons of MMRN1 gene in 4q22.1 and a duplication of 1,29 Mb of a genomic region flanking the triplication. Conclusions. The identification of this family indicates a novel mechanism of SNCA gene multiplication, which confirms the genomic instability in this region and provides data on the genotype-phenotype correlation in PD patients.
2015
Ferese, Rosangela; Modugno, Nicola; Campopiano, Rosa; Santilli, Marco; Zampatti, Stefania; Giardina, Emiliano; Nardone, Annamaria; Postorivo, Diana; Fornai, Francesco; Novelli, Giuseppe; Romoli, Edoardo; Ruggieri, Stefano; Gambardella, Stefano
File in questo prodotto:
File Dimensione Formato  
Farese 2015.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/764131
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact