The psychostimulant methamphetamine (MA) is toxic to nigro-striatal dopaminergic terminals in both experimental animals and humans. In mice, three consecutive injections of MA (5 mg/kg, i.p. with 2 h of interval) induced a massive degeneration of the nigro-striatal pathway, as reflected by a 50% reduction in the striatal levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC), by a substantial reduction in striatal tyrosine hydroxylase and high-affinity DA transporter immunostaining, and by the development of reactive gliosis. MA-induced nigro-striatal degeneration was largely attenuated in mice lacking alpha1b-adrenergic receptors (ARs). MA-stimulated striatal DA release (measured by microdialysis in freely moving animals) and locomotor activity were also reduced in alpha1b-AR knockout mice. Pharmacological blockade of alpha-adrenergic receptors with prazosin also protected wild-type mice against MA toxicity. These results suggests that alpha1b-ARs may play a role in the toxicity of MA on nigro-striatal DA neurons.

Alpha-1B adrenergic receptor knockout mice are protected against metamphetamine toxicity

FORNAI, FRANCESCO;
2003-01-01

Abstract

The psychostimulant methamphetamine (MA) is toxic to nigro-striatal dopaminergic terminals in both experimental animals and humans. In mice, three consecutive injections of MA (5 mg/kg, i.p. with 2 h of interval) induced a massive degeneration of the nigro-striatal pathway, as reflected by a 50% reduction in the striatal levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC), by a substantial reduction in striatal tyrosine hydroxylase and high-affinity DA transporter immunostaining, and by the development of reactive gliosis. MA-induced nigro-striatal degeneration was largely attenuated in mice lacking alpha1b-adrenergic receptors (ARs). MA-stimulated striatal DA release (measured by microdialysis in freely moving animals) and locomotor activity were also reduced in alpha1b-AR knockout mice. Pharmacological blockade of alpha-adrenergic receptors with prazosin also protected wild-type mice against MA toxicity. These results suggests that alpha1b-ARs may play a role in the toxicity of MA on nigro-striatal DA neurons.
2003
Battaglia, G; Fornai, Francesco; Busceti, Cl; Lembo, G; Nicoletti, F; DE BLASI, A.
File in questo prodotto:
File Dimensione Formato  
Battaglia et al. J Neurochem.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 245.11 kB
Formato Adobe PDF
245.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/76462
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact