The processing of graph in a parallel and distributed fashion is a constantly rising trend, due to the size of the today’s graphs. This paper proposes a multi-layer graph overlay approach to support the orchestration of distributed, vertex-centric computations targeting large graphs. Our approach takes inspiration from the overlay networks, a widely exploited approach for information dissemination, aggregation and computing orchestration in massively distributed systems. We propose Telos, an environment supporting the definition of multi-layer graph overlays which provides each vertex with a layered, vertex-centric, view of the graph. Telos is defined on the top of Apache Spark and has been evaluated by considering two well-known graph problems. We present a set of experimental results showing the effectiveness of our approach.
A Multi-Layer Framework for Graph Processing via Overlay Composition
Dazzi, Patrizio;Lulli, Alessandro;Ricci, Laura
2015-01-01
Abstract
The processing of graph in a parallel and distributed fashion is a constantly rising trend, due to the size of the today’s graphs. This paper proposes a multi-layer graph overlay approach to support the orchestration of distributed, vertex-centric computations targeting large graphs. Our approach takes inspiration from the overlay networks, a widely exploited approach for information dissemination, aggregation and computing orchestration in massively distributed systems. We propose Telos, an environment supporting the definition of multi-layer graph overlays which provides each vertex with a layered, vertex-centric, view of the graph. Telos is defined on the top of Apache Spark and has been evaluated by considering two well-known graph problems. We present a set of experimental results showing the effectiveness of our approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.