The slow cortical oscillation is the major brain rhythm occurring during sleep, and has been the object of thorough investigation for over thirty years. Despite all these efforts, the function and the neuronal mechanisms behind slow cortical rhythms remain only partially understood. In this review we will provide an overview of the techniques available for the in vivo study of slow cortical oscillations in animal models. Our goal is to provide an up to date resource for the selection of the best experimental strategies to study specific aspects of slow oscillations. We will cover both traditional, population-level electrophysiological approaches (electroencephalography - EEG, local field potentials) as well as more recent techniques, such as two photon calcium imaging and optogenetics. Overall, we believe that new breakthroughs in our understanding of slow cortical rhythms will require the integration of different techniques, to bridge the gap between different spatio-temporal scales and go from a correlative to a causal level of analysis.

Slow cortical rhythms: from single-neuron electrophysiology to whole-brain imaging in vivo

FARAGUNA, UGO
2015

Abstract

The slow cortical oscillation is the major brain rhythm occurring during sleep, and has been the object of thorough investigation for over thirty years. Despite all these efforts, the function and the neuronal mechanisms behind slow cortical rhythms remain only partially understood. In this review we will provide an overview of the techniques available for the in vivo study of slow cortical oscillations in animal models. Our goal is to provide an up to date resource for the selection of the best experimental strategies to study specific aspects of slow oscillations. We will cover both traditional, population-level electrophysiological approaches (electroencephalography - EEG, local field potentials) as well as more recent techniques, such as two photon calcium imaging and optogenetics. Overall, we believe that new breakthroughs in our understanding of slow cortical rhythms will require the integration of different techniques, to bridge the gap between different spatio-temporal scales and go from a correlative to a causal level of analysis.
Olcese, Umberto; Faraguna, Ugo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/766277
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact