Two phase flow inside minichannels is one of the most investigated research topic at present. The measurement of the flow rate parameters is fundamental to characterize the flow pattern and its evolution over time. This paper shows that an optical technique, well-known for large diameter pipes, can be applied to mini channels with a laminar mass flow rate. In particular, a Y-junction mono-fiber optic system with a chamfered tip probe has been built and tested. This method is applied to the local void fraction measurement in a copper capillary pipe with internal diameter of 2 mm and external diameter of 3.00 mm. Different probes have been developed and tested. The accuracy of the method depends on the size, the shape of the tip and on the tip distance from the pipe centre. Different distances and liquid flow rate have been tested. The two-phase flow pattern is also visualized and recorded by a high speed camera (FASTEC Troubleshooter 16000 fps) and post processed with an image analysis technique. A good agreement between the optical and the video signal has been observed.
Low cost true monofiber optical probe for local void fraction measurements in minichannels
DI MARCO, PAOLO;FILIPPESCHI, SAURO;MAMELI, MAURO
2014-01-01
Abstract
Two phase flow inside minichannels is one of the most investigated research topic at present. The measurement of the flow rate parameters is fundamental to characterize the flow pattern and its evolution over time. This paper shows that an optical technique, well-known for large diameter pipes, can be applied to mini channels with a laminar mass flow rate. In particular, a Y-junction mono-fiber optic system with a chamfered tip probe has been built and tested. This method is applied to the local void fraction measurement in a copper capillary pipe with internal diameter of 2 mm and external diameter of 3.00 mm. Different probes have been developed and tested. The accuracy of the method depends on the size, the shape of the tip and on the tip distance from the pipe centre. Different distances and liquid flow rate have been tested. The two-phase flow pattern is also visualized and recorded by a high speed camera (FASTEC Troubleshooter 16000 fps) and post processed with an image analysis technique. A good agreement between the optical and the video signal has been observed.File | Dimensione | Formato | |
---|---|---|---|
IOP_Uit 2014_ Guidi et al.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
10.6 MB
Formato
Adobe PDF
|
10.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.