The aim of this paper is to study nondifferentiable constrained multiobjective programs where the partial order in the image space is induced by a closed, convex pointed solid cone C. In particular, a new necessary optimality condition is stated for C-efficient and C-weakly efficient solutions. Assumptions guaranteeing that every weak critical point is a C-efficient or C-weakly efficient solution are investigated, improving in an unifying framework many definitions and results appeared in the recent vector optimization literature. Finally, some weak, strong and converse duality results are stated.
Conic efficiency and duality in nondifferentiable multiobjective mathematical programming
CAMBINI, RICCARDO
2015-01-01
Abstract
The aim of this paper is to study nondifferentiable constrained multiobjective programs where the partial order in the image space is induced by a closed, convex pointed solid cone C. In particular, a new necessary optimality condition is stated for C-efficient and C-weakly efficient solutions. Assumptions guaranteeing that every weak critical point is a C-efficient or C-weakly efficient solution are investigated, improving in an unifying framework many definitions and results appeared in the recent vector optimization literature. Finally, some weak, strong and converse duality results are stated.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Conic efficiency with duality (RIC).pdf
solo utenti autorizzati
Descrizione: Versione Finale Completa Post referaggio
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
256.41 kB
Formato
Adobe PDF
|
256.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.