In this paper we define an efficient implementation of Runge-Kutta methods of Radau IIA type, which are commonly used when solving stiff ODE-IVPs problems. The proposed implementation relies on an alternative low-rank formulation of the methods, for which a splitting procedure is easily defined. The linear convergence analysis of this splitting procedure exhibits excellent properties, which are confirmed by its performance on a few numerical tests.

Efficient implementation of Radau collocation methods

MAGHERINI, CECILIA
2014-01-01

Abstract

In this paper we define an efficient implementation of Runge-Kutta methods of Radau IIA type, which are commonly used when solving stiff ODE-IVPs problems. The proposed implementation relies on an alternative low-rank formulation of the methods, for which a splitting procedure is easily defined. The linear convergence analysis of this splitting procedure exhibits excellent properties, which are confirmed by its performance on a few numerical tests.
2014
Brugnano, Luigi; Iavernaro, Felice; Magherini, Cecilia
File in questo prodotto:
File Dimensione Formato  
brugnano_iavernaro_magherini.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 446.42 kB
Formato Adobe PDF
446.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Magherini_BI_revision1.pdf

Open Access dal 18/09/2016

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 244.29 kB
Formato Adobe PDF
244.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/773500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact