In this paper we introduce the notion of elementary numerosity as a special function defined on all subsets of a given set which takes values in a suitable nonArchimedean field and satisfies the same formal properties as finite cardinality. By improving a classic result by C.W. Henson in nonstandard analysis, we prove a general compatibility result between such elementary numerosities and measures.

Elementary numerosity and measures

BENCI, VIERI;Bottazzi , Emanuele;DI NASSO, MAURO
2014-01-01

Abstract

In this paper we introduce the notion of elementary numerosity as a special function defined on all subsets of a given set which takes values in a suitable nonArchimedean field and satisfies the same formal properties as finite cardinality. By improving a classic result by C.W. Henson in nonstandard analysis, we prove a general compatibility result between such elementary numerosities and measures.
2014
Benci, Vieri; Bottazzi, Emanuele; DI NASSO, Mauro
File in questo prodotto:
File Dimensione Formato  
212-744-1-PB.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 263.99 kB
Formato Adobe PDF
263.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/774907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact