In this paper we introduce the notion of elementary numerosity as a special function defined on all subsets of a given set which takes values in a suitable nonArchimedean field and satisfies the same formal properties as finite cardinality. By improving a classic result by C.W. Henson in nonstandard analysis, we prove a general compatibility result between such elementary numerosities and measures.
Elementary numerosity and measures
BENCI, VIERI;Bottazzi , Emanuele;DI NASSO, MAURO
2014-01-01
Abstract
In this paper we introduce the notion of elementary numerosity as a special function defined on all subsets of a given set which takes values in a suitable nonArchimedean field and satisfies the same formal properties as finite cardinality. By improving a classic result by C.W. Henson in nonstandard analysis, we prove a general compatibility result between such elementary numerosities and measures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
212-744-1-PB.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
263.99 kB
Formato
Adobe PDF
|
263.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.