We consider shifts of a set A⊆N by elements from another set B⊆N, and prove intersection properties according to the relative asymptotic size of A and B. A consequence of our main theorem is the following: If A={a_n} is such that a_n=o(n^(k/k−1)), then the k-recurrence set R_k(A)={x∣|A∩(A+x)|≥k} contains the distance sets of arbitrarily large finite sets.

Intersections of shifted sets

DI NASSO, MAURO
2015

Abstract

We consider shifts of a set A⊆N by elements from another set B⊆N, and prove intersection properties according to the relative asymptotic size of A and B. A consequence of our main theorem is the following: If A={a_n} is such that a_n=o(n^(k/k−1)), then the k-recurrence set R_k(A)={x∣|A∩(A+x)|≥k} contains the distance sets of arbitrarily large finite sets.
DI NASSO, Mauro
File in questo prodotto:
File Dimensione Formato  
4861-13827-1-PB.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 283.9 kB
Formato Adobe PDF
283.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/774911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact