Coherent light sources in the visible range are playing important roles in our daily life and modern technology, since about 50% of the capability of the our human brains is devoted to processing visual information. Visible lasers can be achieved by nonlinear optical process of infrared lasers and direct lasing of gain materials, and the latter has advantages in the aspects of compactness, efficiency, simplicity, etc. However, due to lack of visible optical modulators, the directly generated visible lasers with only a gain material are constrained in continuous-wave operation. Here, we demonstrated the fabrication of a visible optical modulator and pulsed visible lasers based on atomic-layer molybdenum sulfide (MoS 2), a ultrathin two-dimensional material with about 9-10 layers. By employing the nonlinear absorption of the modulator, the pulsed orange, red and deep red lasers were directly generated. Besides, the present atomic-layer MoS 2 optical modulator has broadband modulating properties and advantages in the simple preparation process. The present results experimentally verify the theoretical prediction for the low-dimensional optoelectronic modulating devices in the visible wavelength region and may open an attractive avenue for removing a stumbling block for the further development of pulsed visible lasers.

Atomic-layer molybdenum sulfide optical modulator for visible coherent light

DI LIETO, ALBERTO;TONELLI, MAURO;
2015

Abstract

Coherent light sources in the visible range are playing important roles in our daily life and modern technology, since about 50% of the capability of the our human brains is devoted to processing visual information. Visible lasers can be achieved by nonlinear optical process of infrared lasers and direct lasing of gain materials, and the latter has advantages in the aspects of compactness, efficiency, simplicity, etc. However, due to lack of visible optical modulators, the directly generated visible lasers with only a gain material are constrained in continuous-wave operation. Here, we demonstrated the fabrication of a visible optical modulator and pulsed visible lasers based on atomic-layer molybdenum sulfide (MoS 2), a ultrathin two-dimensional material with about 9-10 layers. By employing the nonlinear absorption of the modulator, the pulsed orange, red and deep red lasers were directly generated. Besides, the present atomic-layer MoS 2 optical modulator has broadband modulating properties and advantages in the simple preparation process. The present results experimentally verify the theoretical prediction for the low-dimensional optoelectronic modulating devices in the visible wavelength region and may open an attractive avenue for removing a stumbling block for the further development of pulsed visible lasers.
Zhang, Yuxia; Wang, Shuxian; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; DI LIETO, Alberto; Tonelli, Mauro; Wang, Jiyang
File in questo prodotto:
File Dimensione Formato  
di_lieto_srep11342.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/776553
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 59
social impact