In this paper, we discuss numerical approximation of the eigenvalues of the one-dimensional radial Schrödinger equation posed on a semi-infinite interval. The original problem is first transformed to one defined on a finite domain by applying suitable change of the independent variable. The eigenvalue problem for the resulting differential operator is then approximated by a generalized algebraic eigenvalue problem arising after discretization of the analytical problem by the matrix method based on high order finite difference schemes. Numerical experiments illustrate the performance of the approach.
Matrix methods for radial Schrödinger eigenproblems defined on a semi-infinite domain
ACETO, LIDIA;MAGHERINI, CECILIA;
2015-01-01
Abstract
In this paper, we discuss numerical approximation of the eigenvalues of the one-dimensional radial Schrödinger equation posed on a semi-infinite interval. The original problem is first transformed to one defined on a finite domain by applying suitable change of the independent variable. The eigenvalue problem for the resulting differential operator is then approximated by a generalized algebraic eigenvalue problem arising after discretization of the analytical problem by the matrix method based on high order finite difference schemes. Numerical experiments illustrate the performance of the approach.File | Dimensione | Formato | |
---|---|---|---|
Aceto_Maghe_Weinm.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
439.44 kB
Formato
Adobe PDF
|
439.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Aceto_MW.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
173.34 kB
Formato
Adobe PDF
|
173.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.