In this paper, we discuss numerical approximation of the eigenvalues of the one-dimensional radial Schrödinger equation posed on a semi-infinite interval. The original problem is first transformed to one defined on a finite domain by applying suitable change of the independent variable. The eigenvalue problem for the resulting differential operator is then approximated by a generalized algebraic eigenvalue problem arising after discretization of the analytical problem by the matrix method based on high order finite difference schemes. Numerical experiments illustrate the performance of the approach.

Matrix methods for radial Schrödinger eigenproblems defined on a semi-infinite domain

ACETO, LIDIA;MAGHERINI, CECILIA;
2015-01-01

Abstract

In this paper, we discuss numerical approximation of the eigenvalues of the one-dimensional radial Schrödinger equation posed on a semi-infinite interval. The original problem is first transformed to one defined on a finite domain by applying suitable change of the independent variable. The eigenvalue problem for the resulting differential operator is then approximated by a generalized algebraic eigenvalue problem arising after discretization of the analytical problem by the matrix method based on high order finite difference schemes. Numerical experiments illustrate the performance of the approach.
2015
Aceto, Lidia; Magherini, Cecilia; Weinmüller, Ewa B.
File in questo prodotto:
File Dimensione Formato  
Aceto_Maghe_Weinm.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 439.44 kB
Formato Adobe PDF
439.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Aceto_MW.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 173.34 kB
Formato Adobe PDF
173.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/779318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact