According to the recent developments in imaging strategies and in tailoring fluorescent molecule as probe for monitoring biological systems, we coupled a Bodipy-based molecular rotor (BoMe) with FLIM phasor approach to evaluate the viscosity in different intracellular domains. BoMe rapidly permeates cells, stains cytoplasmic as well as nuclear domains, and its optical properties make it perfectly suited for widely diffused confocal microscopy imaging setups. The capability of BoMe to report on intracellular viscosity was put to the test by using a cellular model of a morbid genetic pathology (Hutchinson-Gilford progeria syndrome, HGPS). Our results show that the nucleoplasm of HGPS cells display reduced viscosity as compared to normal cells. Since BoMe displays significant affinity towards DNA, as demonstrated by an in vitro essay, we hypothesize that genetic features of HGPS, namely the misassembly of lamin A protein within the nuclear lamina, modulates chromatin compaction. This hypothesis nicely agrees with literature data.
Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM
BIVER, TARITA;Signore, Giovanni;Bizzarri, Ranieri
2016-01-01
Abstract
According to the recent developments in imaging strategies and in tailoring fluorescent molecule as probe for monitoring biological systems, we coupled a Bodipy-based molecular rotor (BoMe) with FLIM phasor approach to evaluate the viscosity in different intracellular domains. BoMe rapidly permeates cells, stains cytoplasmic as well as nuclear domains, and its optical properties make it perfectly suited for widely diffused confocal microscopy imaging setups. The capability of BoMe to report on intracellular viscosity was put to the test by using a cellular model of a morbid genetic pathology (Hutchinson-Gilford progeria syndrome, HGPS). Our results show that the nucleoplasm of HGPS cells display reduced viscosity as compared to normal cells. Since BoMe displays significant affinity towards DNA, as demonstrated by an in vitro essay, we hypothesize that genetic features of HGPS, namely the misassembly of lamin A protein within the nuclear lamina, modulates chromatin compaction. This hypothesis nicely agrees with literature data.File | Dimensione | Formato | |
---|---|---|---|
Ferri_2015_RB_Tita.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.