We explore the possibility that the fundamental theory of nature does not contain any scale. This implies a renormalizable quantum gravity theory where the graviton kinetic term has 4 derivatives, and can be reinterpreted as gravity minus an anti-graviton. We compute the super-Planckian RGE of adimensional gravity coupled to a generic matter sector. The Planck scale and a flat space can arise dynamically at quantum level provided that a quartic scalar coupling and its β function vanish at the Planck scale. This is how the Higgs boson behaves for M h ≈ 125 GeV and M t ≈ 171 GeV. Within agravity, inflation is a generic phenomenon: the slow-roll parameters are given by the β-functions of the theory, and are small if couplings are perturbative. The predictions n s ≈ 0.967 and r ≈ 0.13 arise if the inflaton is identified with the Higgs of gravity. Furthermore, quadratically divergent corrections to the Higgs mass vanish: a small weak scale is natural and can be generated by agravity quantum corrections. © 2014 The Author(s).

Agravity

STRUMIA, ALESSANDRO
2014-01-01

Abstract

We explore the possibility that the fundamental theory of nature does not contain any scale. This implies a renormalizable quantum gravity theory where the graviton kinetic term has 4 derivatives, and can be reinterpreted as gravity minus an anti-graviton. We compute the super-Planckian RGE of adimensional gravity coupled to a generic matter sector. The Planck scale and a flat space can arise dynamically at quantum level provided that a quartic scalar coupling and its β function vanish at the Planck scale. This is how the Higgs boson behaves for M h ≈ 125 GeV and M t ≈ 171 GeV. Within agravity, inflation is a generic phenomenon: the slow-roll parameters are given by the β-functions of the theory, and are small if couplings are perturbative. The predictions n s ≈ 0.967 and r ≈ 0.13 arise if the inflaton is identified with the Higgs of gravity. Furthermore, quadratically divergent corrections to the Higgs mass vanish: a small weak scale is natural and can be generated by agravity quantum corrections. © 2014 The Author(s).
2014
Salvio, Alberto; Strumia, Alessandro
File in questo prodotto:
File Dimensione Formato  
Strumia_784528.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 693.57 kB
Formato Adobe PDF
693.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/784528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 230
  • ???jsp.display-item.citation.isi??? 231
social impact