The grafting and the postgrafting functionalization of lanthanide ions on commercial amorphous silica have been herein carried out by using as a precursor the terbium N,N-dibutylcarbamato derivative [Tb(O2CNBu2)3]. The reaction of the complex with the surface silanols involved only a fraction of the carbamato ligands. The following protolytic substitution of the residual carbamato ligands was carried out by exploiting the Brønsteds acidity of the β-diketone dibenzoylmethane (Hdbm), in view of the antenna effect of the β-diketonato groups, which are commonly used in lanthanide photoluminescence studies. The reaction proceeded at room temperature in a clean and easy way affording the introduction of the chosen functionality in the lanthanide coordination sphere. The same procedure has been followed by using as a precursor the X-ray characterized heterometallic N,N-dibutylcarbamato complex [NH2Bu2]2[Ln4(CO3)(O2CNBu2)12] (Ln = Eu, Tb, Tm). In both cases, X-ray photoelectron spectroscopy evidenced the chemical implantation of the lanthanide ions on the silica surface, and photoluminescence studies pointed out the potentiality of the proposed synthetic approach in the preparation of highly luminescent materials.
Smart Grafting of Lanthanides onto Silica via N,N-Dialkylcarbamato Complexes
BELLI, DANIELA;LABELLA, LUCA;MARCHETTI, FABIO;SAMARITANI, SIMONA
2016-01-01
Abstract
The grafting and the postgrafting functionalization of lanthanide ions on commercial amorphous silica have been herein carried out by using as a precursor the terbium N,N-dibutylcarbamato derivative [Tb(O2CNBu2)3]. The reaction of the complex with the surface silanols involved only a fraction of the carbamato ligands. The following protolytic substitution of the residual carbamato ligands was carried out by exploiting the Brønsteds acidity of the β-diketone dibenzoylmethane (Hdbm), in view of the antenna effect of the β-diketonato groups, which are commonly used in lanthanide photoluminescence studies. The reaction proceeded at room temperature in a clean and easy way affording the introduction of the chosen functionality in the lanthanide coordination sphere. The same procedure has been followed by using as a precursor the X-ray characterized heterometallic N,N-dibutylcarbamato complex [NH2Bu2]2[Ln4(CO3)(O2CNBu2)12] (Ln = Eu, Tb, Tm). In both cases, X-ray photoelectron spectroscopy evidenced the chemical implantation of the lanthanide ions on the silica surface, and photoluminescence studies pointed out the potentiality of the proposed synthetic approach in the preparation of highly luminescent materials.File | Dimensione | Formato | |
---|---|---|---|
IC2016SmartGrafting.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
revised manuscript Smart Grafting.pdf
accesso aperto
Descrizione: Accepted manuscript
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.