Over the last ten years the strong technological advances in position sensitive detectors have encouraged the scientific community to develop dedicated imagers for new diagnostic techniques in the field of isotope functional imaging. The main feature of the new detectors is the compactness that allows suitable detection geometry fitting the body anatomy. Position sensitive photomultiplier tubes (PSPMTs) have been showing very good features with continuous improvement. In 1997 a novel gamma camera was proposed based on a closely packed array of second generation I in PSPMTs. The main advantage is the potentially unlimited detection area but with the disadvantage of a relatively large non-active area (30%). The Hamamatsu H8500 Flat Panel PMT represents the last generation of PSPMT. Its extreme compactness allows array assembly with an improved effective area up to 97%. This paper, evaluates the potential improvement of imaging performances of a gamma camera based on the new PSPMT, compared with the two previous generation PSPMTs. To this aim the factors affecting the gamma camera final response, like PSPMT gain anode variation and position resolution, are analyzed and related to the uniformity counting response, energy resolution, position linearity, detection efficiency and intrinsic spatial resolution. The results show that uniformity of pulse height response seems to be the main parameter that provides the best imaging performances. Furthermore an extreme identification of pixels seems to be not effective to a full correction of image uniformity counting and gain response. However, considering the present technological limits, Flat Panel PSPMTs could be the best trade off between gamma camera imaging performances, compactness and large detection area. (C) 2003 Elsevier B.V. All rights reserved.

A novel compact gamma camera based on flat panel PMT

DEL GUERRA, ALBERTO
2003-01-01

Abstract

Over the last ten years the strong technological advances in position sensitive detectors have encouraged the scientific community to develop dedicated imagers for new diagnostic techniques in the field of isotope functional imaging. The main feature of the new detectors is the compactness that allows suitable detection geometry fitting the body anatomy. Position sensitive photomultiplier tubes (PSPMTs) have been showing very good features with continuous improvement. In 1997 a novel gamma camera was proposed based on a closely packed array of second generation I in PSPMTs. The main advantage is the potentially unlimited detection area but with the disadvantage of a relatively large non-active area (30%). The Hamamatsu H8500 Flat Panel PMT represents the last generation of PSPMT. Its extreme compactness allows array assembly with an improved effective area up to 97%. This paper, evaluates the potential improvement of imaging performances of a gamma camera based on the new PSPMT, compared with the two previous generation PSPMTs. To this aim the factors affecting the gamma camera final response, like PSPMT gain anode variation and position resolution, are analyzed and related to the uniformity counting response, energy resolution, position linearity, detection efficiency and intrinsic spatial resolution. The results show that uniformity of pulse height response seems to be the main parameter that provides the best imaging performances. Furthermore an extreme identification of pixels seems to be not effective to a full correction of image uniformity counting and gain response. However, considering the present technological limits, Flat Panel PSPMTs could be the best trade off between gamma camera imaging performances, compactness and large detection area. (C) 2003 Elsevier B.V. All rights reserved.
2003
Pani, R; Pellegrini, R; Cinti, Mn; Trotta, C; Trotta, G; Scafe, R; Betti, M; Cusanno, F; Montani, L; Iurlaro, G; Garibaldi, F; DEL GUERRA, Alberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/78652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact