Surface-active copolymers of a styrene carrying a polysiloxane side chain (SSi) and a triethyleneglycol monomethyl ether-modified pentafluorostyrene (EFS) (39 and 77 mol% EFS) were prepared and incorporated (8 wt% loading) into a polydimethyl siloxane (PDMS) matrix to produce crosslinked blend films. The wettability of the surface-active copolymer films and PDMS-blend films was investigated by contact angle measurements. An angle-resolved X-ray photoelectron spectroscopy (XPS) of the surface chemical composition before and after immersion in water for 7 days enabled location of the hydrophilic oxyethylenic segments of EFS within the top 10 nm from the film surface. Laboratory bioassays on the blend films against the marine green alga Ulva linza evidenced that the films containing the copolymer with the larger EFS content showed greater resistance to settlement of zoospores of U. linza, whereas both films had superior fouling-release properties of sporelings (young plants) compared to the PDMS standard films.

Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza

MARTINELLI, ELISA
Primo
;
GALLI, GIANCARLO
Ultimo
2016-01-01

Abstract

Surface-active copolymers of a styrene carrying a polysiloxane side chain (SSi) and a triethyleneglycol monomethyl ether-modified pentafluorostyrene (EFS) (39 and 77 mol% EFS) were prepared and incorporated (8 wt% loading) into a polydimethyl siloxane (PDMS) matrix to produce crosslinked blend films. The wettability of the surface-active copolymer films and PDMS-blend films was investigated by contact angle measurements. An angle-resolved X-ray photoelectron spectroscopy (XPS) of the surface chemical composition before and after immersion in water for 7 days enabled location of the hydrophilic oxyethylenic segments of EFS within the top 10 nm from the film surface. Laboratory bioassays on the blend films against the marine green alga Ulva linza evidenced that the films containing the copolymer with the larger EFS content showed greater resistance to settlement of zoospores of U. linza, whereas both films had superior fouling-release properties of sporelings (young plants) compared to the PDMS standard films.
2016
Martinelli, Elisa; Hill, Sophie D.; Finlay, John A.; Callow, Maureen E.; Callow, James A.; Glisenti, Antonella; Galli, Giancarlo
File in questo prodotto:
File Dimensione Formato  
Amphiphilic modified-styrene copolymer films.pdf

accesso aperto

Descrizione: bozza finale post-referaggio
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/788260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact