This paper describes a Kalman filter that integrates the measurements coming from inertial system, GPS receiver and air data system with self-aligning probes to provide accurate sensing of the aircraft state in all the flight phases. A particular attention has been focused on the angle of attack and sideslip angle reconstruction. The evaluation of these angles becomes challenging during manoeuvres with high load factors, typical for high-performance aircraft. In these conditions, the air data elaboration accuracy is significantly lowered by the sensors’ dynamics. The paper demonstrates that a relevant improvement of accuracy can be obtained in both high and low frequency range, and specific tests campaign has been carried out with a simulation platform including the flight simulator of a light military jet trainer.
Sensor Fusion Approach for Aircraft State Estimation using Inertial and Air-Data Systems
SCHETTINI, FRANCESCO;DI RITO, GIANPIETRO;GALATOLO, ROBERTO;DENTI, EUGENIO
2016-01-01
Abstract
This paper describes a Kalman filter that integrates the measurements coming from inertial system, GPS receiver and air data system with self-aligning probes to provide accurate sensing of the aircraft state in all the flight phases. A particular attention has been focused on the angle of attack and sideslip angle reconstruction. The evaluation of these angles becomes challenging during manoeuvres with high load factors, typical for high-performance aircraft. In these conditions, the air data elaboration accuracy is significantly lowered by the sensors’ dynamics. The paper demonstrates that a relevant improvement of accuracy can be obtained in both high and low frequency range, and specific tests campaign has been carried out with a simulation platform including the flight simulator of a light military jet trainer.File | Dimensione | Formato | |
---|---|---|---|
(Conf) 2016 - IEEE MAS 2016 - Sensor Fusion.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
449.81 kB
Formato
Adobe PDF
|
449.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.