In this work, we present a simple decomposition scheme of the Kohn-Sham optimized orbitals which is able to provide a reduced basis set, made of localized polycentric orbitals, specifically designed for Quantum Monte Carlo. The decomposition follows a standard Density functional theory (DFT) calculation and is based on atomic connectivity and shell structure. The new orbitals are used to construct a compact correlated wave function of the Slater–Jastrow form which is optimized at the Variational Monte Carlo level and then used as the trial wave function for a final Diffusion Monte Carlo accurate energy calculation. We are able, in this way, to capture the basic information on the real system brought by the Kohn-Sham orbitals and use it for the calculation of the ground state energy within a strictly variational method. Here, we show test calculations performed on some small selected systems to assess the validity of the proposed approach in a molecular fragmentation, in the calculation of a barrier height of a chemical reaction and in the determination of intermolecular potentials. The final Diffusion Monte Carlo energies are in very good agreement with the best literature data within chemical accuracy.

Localized Polycentric Orbital Basis Set for Quantum Monte Carlo Calculations Derived from the Decomposition of Kohn-Sham Optimized Orbitals

AMOVILLI, CLAUDIO;FLORIS, FRANCA MARIA;
2016-01-01

Abstract

In this work, we present a simple decomposition scheme of the Kohn-Sham optimized orbitals which is able to provide a reduced basis set, made of localized polycentric orbitals, specifically designed for Quantum Monte Carlo. The decomposition follows a standard Density functional theory (DFT) calculation and is based on atomic connectivity and shell structure. The new orbitals are used to construct a compact correlated wave function of the Slater–Jastrow form which is optimized at the Variational Monte Carlo level and then used as the trial wave function for a final Diffusion Monte Carlo accurate energy calculation. We are able, in this way, to capture the basic information on the real system brought by the Kohn-Sham orbitals and use it for the calculation of the ground state energy within a strictly variational method. Here, we show test calculations performed on some small selected systems to assess the validity of the proposed approach in a molecular fragmentation, in the calculation of a barrier height of a chemical reaction and in the determination of intermolecular potentials. The final Diffusion Monte Carlo energies are in very good agreement with the best literature data within chemical accuracy.
2016
Amovilli, Claudio; Floris, FRANCA MARIA; Grisafi, Andrea
File in questo prodotto:
File Dimensione Formato  
Amovilli_795789.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 562.17 kB
Formato Adobe PDF
562.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/795789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact