We consider Kirchhoff equations with strong damping, namely with a friction term which depends on a power of the “elastic” operator. We address local and global existence of solutions in two different regimes depending on the exponent in the friction term. When the exponent is greater than 1/2, the dissipation prevails, and we obtain global existence in the energy space, assuming only degenerate hyperbolicity and continuity of the nonlinear term. When the exponent is less than 1/2, we assume strict hyperbolicity and we consider a phase space depending on the continuity modulus of the nonlinear term and on the exponent in the damping. In this phase space, we prove local existence and global existence if initial data are small enough. The regularity we assume both on initial data and on the nonlinear term is weaker than in the classical results for Kirchhoff equations with standard damping. Proofs exploit some recent sharp results for the linearized equation and suitably defined interpolation spaces.

Kirchhoff equations with strong damping

GHISI, MARINA;GOBBINO, MASSIMO
2016-01-01

Abstract

We consider Kirchhoff equations with strong damping, namely with a friction term which depends on a power of the “elastic” operator. We address local and global existence of solutions in two different regimes depending on the exponent in the friction term. When the exponent is greater than 1/2, the dissipation prevails, and we obtain global existence in the energy space, assuming only degenerate hyperbolicity and continuity of the nonlinear term. When the exponent is less than 1/2, we assume strict hyperbolicity and we consider a phase space depending on the continuity modulus of the nonlinear term and on the exponent in the damping. In this phase space, we prove local existence and global existence if initial data are small enough. The regularity we assume both on initial data and on the nonlinear term is weaker than in the classical results for Kirchhoff equations with standard damping. Proofs exploit some recent sharp results for the linearized equation and suitably defined interpolation spaces.
2016
Ghisi, Marina; Gobbino, Massimo
File in questo prodotto:
File Dimensione Formato  
arxivJEE2016.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 523.34 kB
Formato Adobe PDF
523.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/797086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact