The azimuthal anchoring energy of the nematic liquid crystal 4-pentyl-T-cyanobiphenil (5CB) oil a poly(tetrafluoroethylene) (teflon, PTFE) film is measured for the first time. The PTFE film is deposed using the Wittmann and Smith technique which consists on rubbing a bar of this polymer against a glass substrate at a controlled temperature and pressure. Measurements of the azimuthal anchoring energy are made with a reflectometric technique which provides high accuracy and sensitivity. The dependence of the azimuthal anchoring energy on temperature and on the rubbing pressure is investigated. The extrapolation length remains virtually constant in the whole temperature range of the nematic phase except for an increase of 2.5% close to the clearing temperature. The azimuthal anchoring energy is somewhat strong and increases with increasing the deposition pressure of PTFE. The observation of a relevant pre-transitional anisotropy of the reflection coefficients in the isotropic phase proves that the surface interactions favor an excess of orientational order. Ageing of the anchoring energy and gliding of the easy axis are experimentally observed. Both these phenomena suggest the presence of an anisotropic adsorbed layer of nematic molecules on the PTFE film.

Azimuthal anchoring energy at the interface between a nematic liquid crystal and a PTFE substrate

FAETTI, SANDRO;
2003-01-01

Abstract

The azimuthal anchoring energy of the nematic liquid crystal 4-pentyl-T-cyanobiphenil (5CB) oil a poly(tetrafluoroethylene) (teflon, PTFE) film is measured for the first time. The PTFE film is deposed using the Wittmann and Smith technique which consists on rubbing a bar of this polymer against a glass substrate at a controlled temperature and pressure. Measurements of the azimuthal anchoring energy are made with a reflectometric technique which provides high accuracy and sensitivity. The dependence of the azimuthal anchoring energy on temperature and on the rubbing pressure is investigated. The extrapolation length remains virtually constant in the whole temperature range of the nematic phase except for an increase of 2.5% close to the clearing temperature. The azimuthal anchoring energy is somewhat strong and increases with increasing the deposition pressure of PTFE. The observation of a relevant pre-transitional anisotropy of the reflection coefficients in the isotropic phase proves that the surface interactions favor an excess of orientational order. Ageing of the anchoring energy and gliding of the easy axis are experimentally observed. Both these phenomena suggest the presence of an anisotropic adsorbed layer of nematic molecules on the PTFE film.
2003
Campanelli, E; Faetti, Sandro; Nobili, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/80305
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact