Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block.

Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment

LENZI, PAOLA;FORNAI, FRANCESCO;
2017-01-01

Abstract

Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block.
2017
Fabrizi, C; Pompili, E; Somma, F; De Vito, S; Ciraci, V; Artico, M; Lenzi, Paola; Fornai, Francesco; Fumagalli, L.
File in questo prodotto:
File Dimensione Formato  
Fabrizi_et_al-2017-Journal_of_Applied_Toxicology.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 976.58 kB
Formato Adobe PDF
976.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2016 Fabrizi .pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/804043
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact