The intrinsic self-healing ability of polyketone (PK) chemically modified into furan and/or OH groups containing derivatives is presented. Polymers bearing different ratios of both functional groups were cross-linked via furan/bis-maleimide (Diels-Alder adducts) and hydrogen bonding interactions (aliphatic and aromatic OH groups). The resulting thermosets display tuneable softening points (peak of tan (δ)) from 90 to 137 °C as established by DMTA. It is found that the cross-linked system containing only furan groups shows the highest softening temperature. On the other hand, systems displaying the combination of Diels-Alder adducts and hydrogen bonding (up to 60 mol % of -OH groups) do not show any change in modulus between heating cycles (i.e. factually a quantitative recovery of the mechanical behaviour). It is believed that the novelty of these tuneable thermosets can offer significant advantages over conventional reversible covalent systems. The synergistic reinforcement of both interactions resists multiple heating/healing cycles without any loss of mechanical properties even for thermally healed broken samples.

Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions

PUCCI, ANDREA;
2016-01-01

Abstract

The intrinsic self-healing ability of polyketone (PK) chemically modified into furan and/or OH groups containing derivatives is presented. Polymers bearing different ratios of both functional groups were cross-linked via furan/bis-maleimide (Diels-Alder adducts) and hydrogen bonding interactions (aliphatic and aromatic OH groups). The resulting thermosets display tuneable softening points (peak of tan (δ)) from 90 to 137 °C as established by DMTA. It is found that the cross-linked system containing only furan groups shows the highest softening temperature. On the other hand, systems displaying the combination of Diels-Alder adducts and hydrogen bonding (up to 60 mol % of -OH groups) do not show any change in modulus between heating cycles (i.e. factually a quantitative recovery of the mechanical behaviour). It is believed that the novelty of these tuneable thermosets can offer significant advantages over conventional reversible covalent systems. The synergistic reinforcement of both interactions resists multiple heating/healing cycles without any loss of mechanical properties even for thermally healed broken samples.
2016
Araya Hermosilla, R.; Lima, G. M. R.; Raffa, P.; Fortunato, G.; Pucci, Andrea; Flores, Mario E.; Moreno Villoslada, I.; Broekhuis, A. A.; Picchioni, F.
File in questo prodotto:
File Dimensione Formato  
Intrinsic self-healing_revised.docx

Open Access dal 01/09/2018

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 527.99 kB
Formato Microsoft Word XML
527.99 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/805411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact