This paper discusses a mathematical model to determine an analytical form of the equations describing the relative motion of two spacecraft that, using a suitable continuous-thrust propulsion system, track highly non-Keplerian orbits, whose orbital plane does not contain the primary's center-of-mass. The relative motion is described within a rotating reference frame via modified equinoctial elements, thus eliminating the singularities that arise when a set of classical orbital elements is used. In this sense, the paper completes and extends the recent analysis of the relative motion of two spacecraft in closed (either circular or elliptic) displaced orbits. When the eccentricity of the displaced orbits is sufficiently small, the method is able to calculate the approximate bounds of the two spacecraft relative distances using a semi-analytical approach and with a reduced computational effort. Some numerical simulation results provide an evidence of the effectiveness of the proposed method.

Analysis of relative motion in non-Keplerian orbits via modified equinoctial elements

MENGALI, GIOVANNI
Secondo
Writing – Original Draft Preparation
;
QUARTA, ALESSANDRO ANTONIO
Penultimo
Writing – Review & Editing
;
2016-01-01

Abstract

This paper discusses a mathematical model to determine an analytical form of the equations describing the relative motion of two spacecraft that, using a suitable continuous-thrust propulsion system, track highly non-Keplerian orbits, whose orbital plane does not contain the primary's center-of-mass. The relative motion is described within a rotating reference frame via modified equinoctial elements, thus eliminating the singularities that arise when a set of classical orbital elements is used. In this sense, the paper completes and extends the recent analysis of the relative motion of two spacecraft in closed (either circular or elliptic) displaced orbits. When the eccentricity of the displaced orbits is sufficiently small, the method is able to calculate the approximate bounds of the two spacecraft relative distances using a semi-analytical approach and with a reduced computational effort. Some numerical simulation results provide an evidence of the effectiveness of the proposed method.
2016
Wang, W.; Mengali, Giovanni; Quarta, ALESSANDRO ANTONIO; Yuan, J.
File in questo prodotto:
File Dimensione Formato  
AESCTE_58_2016.pdf

solo utenti autorizzati

Descrizione: Versione stampata
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
[2016] Analysis of relative motion in non-Keplerian orbits via modified equinoctial elements.pdf

accesso aperto

Descrizione: Versione finale identica in tutto a quella pubblicata fuorché nell’impaginazione editoriale.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 863.72 kB
Formato Adobe PDF
863.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/806509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact