Emerging application scenarios for Cyber Physical Systems often require the networking of sensing and actuation nodes at high data rate and through wireless links. Lot of surveillance and control systems adopt as input sensors distributed video cameras operating at different spectral ranges and covering different fields of view. Arrays of radio/light detection and ranging (Radar/Lidar) sensors are often used to detect the presence of targets, of their speeds, distance and direction. The relevant bandwidth requirement amounts to some Gbps. The wireless connection is essential for easy and flexible deployment of the sensing/actuation nodes. A key technology to keep low the size and weight of the nodes is the fully integration at mm-waves of wireless transceivers sustaining Gbps data rate. To this aim, this paper presents the design of 60 GHz transceiver key blocks (Low Noise Amplifier, Power Amplifier, Antenna) to ensure connection distances up to 10 m and data rate of several Gbps. Around 60 GHz there are freely-available (unlicensed) worldwide several GHz of bandwidth. By using a CMOS Silicon-on-Insulator technology RF, analog and digital baseband circuitry can be integrated single-chip minimizing noise coupling. At mm-wave the wavelength is few mm and hence even the antenna is integrated on chip reducing cost and size vs. off-chip antenna solutions. The proposed transceiver enables at physical layer the implementation in compact nodes of links with data rates of several Gbps and up to 10 m distance; this is suited for home/office scenarios, or on-board vehicles (cars, trains, ships, airplanes) or body area networks for healthcare and wellness.

Mm-wave integrated wireless transceiver: enabling technology for high bandwidth short-range networking in cyber physical systems

SAPONARA, SERGIO
Primo
Writing – Original Draft Preparation
;
NERI, BRUNO
2016-01-01

Abstract

Emerging application scenarios for Cyber Physical Systems often require the networking of sensing and actuation nodes at high data rate and through wireless links. Lot of surveillance and control systems adopt as input sensors distributed video cameras operating at different spectral ranges and covering different fields of view. Arrays of radio/light detection and ranging (Radar/Lidar) sensors are often used to detect the presence of targets, of their speeds, distance and direction. The relevant bandwidth requirement amounts to some Gbps. The wireless connection is essential for easy and flexible deployment of the sensing/actuation nodes. A key technology to keep low the size and weight of the nodes is the fully integration at mm-waves of wireless transceivers sustaining Gbps data rate. To this aim, this paper presents the design of 60 GHz transceiver key blocks (Low Noise Amplifier, Power Amplifier, Antenna) to ensure connection distances up to 10 m and data rate of several Gbps. Around 60 GHz there are freely-available (unlicensed) worldwide several GHz of bandwidth. By using a CMOS Silicon-on-Insulator technology RF, analog and digital baseband circuitry can be integrated single-chip minimizing noise coupling. At mm-wave the wavelength is few mm and hence even the antenna is integrated on chip reducing cost and size vs. off-chip antenna solutions. The proposed transceiver enables at physical layer the implementation in compact nodes of links with data rates of several Gbps and up to 10 m distance; this is suited for home/office scenarios, or on-board vehicles (cars, trains, ships, airplanes) or body area networks for healthcare and wellness.
2016
Saponara, Sergio; Neri, Bruno
File in questo prodotto:
File Dimensione Formato  
mmwave-integrated-wireless-transceiver-enabling-technology-for-high-bandwidth-shortrange-networking-in-cyber-physical-systems2016Microsystem-Technologies.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Microtechnolgies2016_postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 861.75 kB
Formato Adobe PDF
861.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/811391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact