We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.
Quantitative heartbeat coupling measures in human-horse interaction
LANATA', ANTONIO;GUIDI, ANDREA;VALENZA, GAETANO;BARAGLI, PAOLO;SCILINGO, ENZO PASQUALE
2016-01-01
Abstract
We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.