Abstract: If the 750 GeV resonance in the diphoton channel is confirmed, what are the measurements necessary to infer the properties of the new particle and understand its nature? We address this question in the framework of a single new scalar particle, called digamma (Ϝ). We describe it by an effective field theory, which allows us to obtain general and model-independent results, and to identify the most useful observables, whose relevance will remain also in model-by-model analyses. We derive full expressions for the leading-order processes and compute rates for higher-order decays, digamma production in association with jets, gauge or Higgs bosons, and digamma pair production. We illustrate how measurements of these higher-order processes can be used to extract couplings, quantum numbers, and properties of the new particle.

Digamma, what next?

STRUMIA, ALESSANDRO;
2016-01-01

Abstract

Abstract: If the 750 GeV resonance in the diphoton channel is confirmed, what are the measurements necessary to infer the properties of the new particle and understand its nature? We address this question in the framework of a single new scalar particle, called digamma (Ϝ). We describe it by an effective field theory, which allows us to obtain general and model-independent results, and to identify the most useful observables, whose relevance will remain also in model-by-model analyses. We derive full expressions for the leading-order processes and compute rates for higher-order decays, digamma production in association with jets, gauge or Higgs bosons, and digamma pair production. We illustrate how measurements of these higher-order processes can be used to extract couplings, quantum numbers, and properties of the new particle.
2016
Franceschini, Roberto; Giudice, Gian F.; Kamenik, Jernej F.; Mccullough, Matthew; Riva, Francesco; Strumia, Alessandro; Torre, Riccardo
File in questo prodotto:
File Dimensione Formato  
Strumia_812810.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/812810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact