Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.
A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium
Milne, Roger L;Herranz, Jesús;Michailidou, Kyriaki;Dennis, Joe;Tyrer, Jonathan P;Zamora, M. Pilar;Arias Perez, José Ignacio;González Neira, Anna;Pita, Guillermo;Alonso, M. Rosario;Wang, Qin;Bolla, Manjeet K;Czene, Kamila;Eriksson, Mikael;Humphreys, Keith;Darabi, Hatef;Li, Jingmei;Anton Culver, Hoda;Neuhausen, Susan L;Ziogas, Argyrios;Clarke, Christina A;Hopper, John L;Dite, Gillian S;Apicella, Carmel;Southey, Melissa C;Chenevix Trench, Georgia;Swerdlow, Anthony;Ashworth, Alan;Orr, Nicholas;Schoemaker, Minouk;Jakubowska, Anna;Lubinski, Jan;Jaworska Bieniek, Katarzyna;Durda, Katarzyna;Andrulis, Irene L;Knight, Julia A;Glendon, Gord;Mulligan, Anna Marie;Bojesen, Stig E;Nordestgaard, Børge G;Flyger, Henrik;Nevanlinna, Heli;Muranen, Taru A;Aittomäki, Kristiina;Blomqvist, Carl;Chang Claude, Jenny;Rudolph, Anja;Seibold, Petra;Flesch Janys, Dieter;Wang, Xianshu;Olson, Janet E;Vachon, Celine;Purrington, Kristen;Winqvist, Robert;Pylkäs, Katri;Jukkola Vuorinen, Arja;Grip, Mervi;Dunning, Alison M;Shah, Mitul;Guénel, Pascal;Truong, Thérèse;Sanchez, Marie;Mulot, Claire;Brenner, Hermann;Dieffenbach, Aida Karina;Arndt, Volker;Stegmaier, Christa;Lindblom, Annika;Margolin, Sara;Hooning, Maartje J;Hollestelle, Antoinette;Collée, J. Margriet;Jager, Agnes;Cox, Angela;Brock, Ian W;Reed, Malcolm W. R;Devilee, Peter;Tollenaar, Robert A. E. M;Seynaeve, Caroline;Haiman, Christopher A;Henderson, Brian E;Schumacher, Fredrick;Le Marchand, Loic;Simard, Jacques;Dumont, Martine;Soucy, Penny;Dörk, Thilo;Bogdanova, Natalia V;Hamann, Ute;Försti, Asta;Rüdiger, Thomas;Ulmer, Hans Ulrich;Fasching, Peter A;Häberle, Lothar;Ekici, Arif B;Beckmann, Matthias W;Fletcher, Olivia;Johnson, Nichola;dos Santos Silva, Isabel;Peto, Julian;Radice, Paolo;Peterlongo, Paolo;Peissel, Bernard;Mariani, Paolo;Giles, Graham G;Severi, Gianluca;BAGLIETTO, LAURA;Sawyer, Elinor;Tomlinson, Ian;Kerin, Michael;Miller, Nicola;Marme, Federik;Burwinkel, Barbara;Mannermaa, Arto;Kataja, Vesa;Kosma, Veli Matti;Hartikainen, Jaana M;Lambrechts, Diether;Yesilyurt, Betul T;Floris, Giuseppe;Leunen, Karin;Alnæs, Grethe Grenaker;Kristensen, Vessela;Børresen Dale, Anne Lise;García Closas, Montserrat;Chanock, Stephen J;Lissowska, Jolanta;Figueroa, Jonine D;Schmidt, Marjanka K;Broeks, Annegien;Verhoef, Senno;Rutgers, Emiel J;Brauch, Hiltrud;Brüning, Thomas;Ko, Yon Dschun;Couch, Fergus J;Toland, Amanda E;Yannoukakos, Drakoulis;Pharoah, Paul D. P;Hall, Per;Benítez, Javier;Malats, Núria;Easton, Douglas F.
2014-01-01
Abstract
Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.
Milne, Roger L; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P; Zamora, M. Pilar; Arias Perez, José Ignacio; González Neira, Ann...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/818111
Citazioni
19
27
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.