Let E⊂Rn be a quasi minimizer of perimeter, that is, a set such that P(E, Bρ(x))≤(1+ω(ρ))P(F,Bρ(x)) for all variations F with FΔE⊂⊂ Bρ(x) and for a given function ω with limρ→0ω(ρ)=0. We prove that, up to a closed set with dimension at most n−8, for all α<1α<1 the set ∂E is an (n−1)-dimensional C0,α manifold. This result is obtained combining the De Giorgi and Reifenberg regularity theories for area minimizers. Moreover we prove that, in the case n=2, ∂E is a bi-lipschitz curve.

Partial regularity for quasi minimizers of perimeter

PAOLINI, EMANUELE
1999

Abstract

Let E⊂Rn be a quasi minimizer of perimeter, that is, a set such that P(E, Bρ(x))≤(1+ω(ρ))P(F,Bρ(x)) for all variations F with FΔE⊂⊂ Bρ(x) and for a given function ω with limρ→0ω(ρ)=0. We prove that, up to a closed set with dimension at most n−8, for all α<1α<1 the set ∂E is an (n−1)-dimensional C0,α manifold. This result is obtained combining the De Giorgi and Reifenberg regularity theories for area minimizers. Moreover we prove that, in the case n=2, ∂E is a bi-lipschitz curve.
Ambrosio, Luigi; Paolini, Emanuele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/819628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact