L-DOPA is an amino acid precursor to the neurotransmitter dopamine that is extensively used as a prodrug for the treatment of Parkinson’s disease. However, L-DOPA is an unstable compound: when exposed to light or added to aqueous solutions, it may degrade, compromising its therapeutic properties. Methods: In this work, a new type of drug-loaded cyclodextrin-based nanosponge, obtained using molecular imprinting, is described for the prolonged and controlled release of L-DOPA. The molecularly imprinted nanosponges (MIP-NSs) were synthesized by cross-linking β-cyclodextrin with 1,1ʹ-carbonyldiimidazole in DMF in the presence of L-DOPA as a template molecule. TGA, DSC and FTIR analyses were performed to characterize the interactions between L-DOPA and the two nanosponge structures. Quantitative NMR spectroscopy was used to determine the amount and the affinity of L-DOPA entrapped in the nanosponges. The in vitro L-DOPA release kinetics from the NSs were quantitatively determined by HPLC analysis. Results: The MIP-NSs show a slower and more prolonged release profile than the non-imprinted nanosponges. No degradation of the L-DOPA hosted in the MIP-NSs was observed after long-term storage at room temperature. Conclusions: The MIP-NSs are a promising alternative for the storage and controlled delivery of L-DOPA.

Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease

UCCELLO BARRETTA, GLORIA;BALZANO, FEDERICA;
2016-01-01

Abstract

L-DOPA is an amino acid precursor to the neurotransmitter dopamine that is extensively used as a prodrug for the treatment of Parkinson’s disease. However, L-DOPA is an unstable compound: when exposed to light or added to aqueous solutions, it may degrade, compromising its therapeutic properties. Methods: In this work, a new type of drug-loaded cyclodextrin-based nanosponge, obtained using molecular imprinting, is described for the prolonged and controlled release of L-DOPA. The molecularly imprinted nanosponges (MIP-NSs) were synthesized by cross-linking β-cyclodextrin with 1,1ʹ-carbonyldiimidazole in DMF in the presence of L-DOPA as a template molecule. TGA, DSC and FTIR analyses were performed to characterize the interactions between L-DOPA and the two nanosponge structures. Quantitative NMR spectroscopy was used to determine the amount and the affinity of L-DOPA entrapped in the nanosponges. The in vitro L-DOPA release kinetics from the NSs were quantitatively determined by HPLC analysis. Results: The MIP-NSs show a slower and more prolonged release profile than the non-imprinted nanosponges. No degradation of the L-DOPA hosted in the MIP-NSs was observed after long-term storage at room temperature. Conclusions: The MIP-NSs are a promising alternative for the storage and controlled delivery of L-DOPA.
2016
Trotta, F.; Caldera, F.; Cavalli, R.; Soster, M.; Riedo, C.; Biasizzo, M.; UCCELLO BARRETTA, Gloria; Balzano, Federica; Brunella, V.
File in questo prodotto:
File Dimensione Formato  
Expert Opinionon Drug Delivery 2016 post-print.pdf

Open Access dal 25/10/2017

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/820813
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 62
social impact