The GPCALMA (Grid Platform for Computer Assisted Library for MAmmography) collaboration involves several departments of physics, INFN (National Institute of Nuclear Physics) sections, and italian hospitals. The aim of this collaboration is developing a tool that can help radiologists in early detection of breast cancer. GPCALMA has built a large distributed database of digitised mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) software which is integrated in a station that can also be used for acquire new images, as archive and to perform statistical analysis. The images (18x24 cm, digitised by a CCD linear scanner with a 85 mum pitch and 4096 gray levels) are completely described: pathological ones have a consistent characterization with radiologist's diagnosis and histological data, non pathological ones correspond to patients with a follow up at least three years. The distributed database is realized throught the connection of all the hospitals and research centers in GRID tecnology. In each hospital local patients digital images are stored in the local database. Using GRID connection, GPCALMA will allow each node to work on distributed database data as well as local database data. Using its database the GPCALMA tools perform several analysis. A texture analysis, i.e. an automated classification on adipose, dense or glandular texture, can be provided by the system. GPCALMA software also allows classification of pathological features, in particular massive lesions (both opacities and spiculated lesions) analysis and microcalcification clusters analysis. The detection of pathological features is made using neural network software that provides a selection of areas showing a given "suspicion level" of lesion occurrence. The performance of the GPCALMA system will be presented in terms of the ROC (Receiver Operating Characteristic) curves. The results of GPCALMA system as "second reader" will also be presented.
GPCALMA: A tool for mammography with a GRID-connected distributed database
DELOGU, PASQUALE;FANTACCI, MARIA EVELINA;
2003-01-01
Abstract
The GPCALMA (Grid Platform for Computer Assisted Library for MAmmography) collaboration involves several departments of physics, INFN (National Institute of Nuclear Physics) sections, and italian hospitals. The aim of this collaboration is developing a tool that can help radiologists in early detection of breast cancer. GPCALMA has built a large distributed database of digitised mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) software which is integrated in a station that can also be used for acquire new images, as archive and to perform statistical analysis. The images (18x24 cm, digitised by a CCD linear scanner with a 85 mum pitch and 4096 gray levels) are completely described: pathological ones have a consistent characterization with radiologist's diagnosis and histological data, non pathological ones correspond to patients with a follow up at least three years. The distributed database is realized throught the connection of all the hospitals and research centers in GRID tecnology. In each hospital local patients digital images are stored in the local database. Using GRID connection, GPCALMA will allow each node to work on distributed database data as well as local database data. Using its database the GPCALMA tools perform several analysis. A texture analysis, i.e. an automated classification on adipose, dense or glandular texture, can be provided by the system. GPCALMA software also allows classification of pathological features, in particular massive lesions (both opacities and spiculated lesions) analysis and microcalcification clusters analysis. The detection of pathological features is made using neural network software that provides a selection of areas showing a given "suspicion level" of lesion occurrence. The performance of the GPCALMA system will be presented in terms of the ROC (Receiver Operating Characteristic) curves. The results of GPCALMA system as "second reader" will also be presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.