A wide-ranging analysis was performed by GE Oil & Gas and the University of Florence to investigate the effects on the estimation of centrifugal compressor performance induced by a different choice of the total temperature measurement section. With this goal in mind, the study focused on the analysis of a commonly found discrepancy between the measurements at the impeller outlet section and at the stage exit section. Based on the experimental data collected on a centrifugal impeller, three main physical phenomena were analyzed and discussed in further detail. First the effect of the heat exchange was examined and its influence on the total temperature variation throughout the machine was extrapolated. Next, the influence of the heat-exchange phenomena affecting the temperature sensors was evaluated by means of numerical models and physical assumptions. Finally, the effects on the temperature measurement of the flow structure at the impeller outlet were investigated. In particular, a corrective model to account for the thermal inertia of the thermocouples normally applied in this section was applied to the experimental data. The corrected temperatures at the investigated measurement sections were then compared and their influence on the correct stage performance estimation is discussed in this study.

Effects due to the temperature measurement section on the performance estimation of a centrifugal compressor stage

FERRARI, LORENZO;
2011-01-01

Abstract

A wide-ranging analysis was performed by GE Oil & Gas and the University of Florence to investigate the effects on the estimation of centrifugal compressor performance induced by a different choice of the total temperature measurement section. With this goal in mind, the study focused on the analysis of a commonly found discrepancy between the measurements at the impeller outlet section and at the stage exit section. Based on the experimental data collected on a centrifugal impeller, three main physical phenomena were analyzed and discussed in further detail. First the effect of the heat exchange was examined and its influence on the total temperature variation throughout the machine was extrapolated. Next, the influence of the heat-exchange phenomena affecting the temperature sensors was evaluated by means of numerical models and physical assumptions. Finally, the effects on the temperature measurement of the flow structure at the impeller outlet were investigated. In particular, a corrective model to account for the thermal inertia of the thermocouples normally applied in this section was applied to the experimental data. The corrected temperatures at the investigated measurement sections were then compared and their influence on the correct stage performance estimation is discussed in this study.
2011
978-0-7918-5463-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/824822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact