Nitinol self-expanding stents are used for the endovascular management of peripheral artery diseases of the popliteal artery, which is located behind the knee joint. Unfortunately, the complex kinematics of the artery during the leg flexion leads to severe loading conditions, favouring the mechanical failure of the stent, calling for a specific biomechanical analysis. For this reason, in the present study we reconstruct by medical image analysis the patient-specific popliteal kinematics during leg flexion, which is subsequently exploited to compute the mechanical response of a stent model, virtually implanted in the artery by structural finite element analysis (FEA). The medical image analysis indicates a non-uniform configuration change of the artery during the leg flexion, leading to an increase of the vessel curvature above the knee. The computed mechanical response of the stent reflects the non-uniform configuration change of the artery as after the flexion the average stress is higher in the part of the stent located above the knee. Although the proposed analysis is limited to a case-study, it shows the capability of patient-specific FEA simulations to compute the mechanical response of a stent model subjected to the complex and severe loading conditions of the popliteal artery during leg flexion.

Patient-specific finite element analysis of popliteal stenting

BERCHIOLLI, RAFFAELLA NICE;
2016-01-01

Abstract

Nitinol self-expanding stents are used for the endovascular management of peripheral artery diseases of the popliteal artery, which is located behind the knee joint. Unfortunately, the complex kinematics of the artery during the leg flexion leads to severe loading conditions, favouring the mechanical failure of the stent, calling for a specific biomechanical analysis. For this reason, in the present study we reconstruct by medical image analysis the patient-specific popliteal kinematics during leg flexion, which is subsequently exploited to compute the mechanical response of a stent model, virtually implanted in the artery by structural finite element analysis (FEA). The medical image analysis indicates a non-uniform configuration change of the artery during the leg flexion, leading to an increase of the vessel curvature above the knee. The computed mechanical response of the stent reflects the non-uniform configuration change of the artery as after the flexion the average stress is higher in the part of the stent located above the knee. Although the proposed analysis is limited to a case-study, it shows the capability of patient-specific FEA simulations to compute the mechanical response of a stent model subjected to the complex and severe loading conditions of the popliteal artery during leg flexion.
2016
Conti, Michele; Marconi, Michele; Campanile, Giulia; Reali, Alessandro; Adami, Daniele; Berchiolli, RAFFAELLA NICE; Auricchio, Ferdinando
File in questo prodotto:
File Dimensione Formato  
Patient-specific finite element.pdf

solo utenti autorizzati

Descrizione: Testo completo
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PRE PRINT POPLITEA STENT-1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.97 MB
Formato Adobe PDF
6.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/825080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact