We implemented a numerical model to simulate transport of multiple species and geochemical reactions occurring during electrokinetic remediation of metal-contaminated porous media. The main phenomena described by the model were: (1) species transport by diffusion, electromigration and electroosmosis, (2) pH-dependent buffering of H+, (3) adsorption of metals onto particle surfaces, (4) aqueous speciation, (5) formation and dissolution of solid precipitates. The model was applied to simulate the electrokinetic extraction of heavy metals (Pb, Zn and Ni) from marine harbour sediments, characterized by a heterogeneous solid matrix, high buffering capacity and aged pollution. A good agreement was found between simulations of pH, electroosmotic flow and experimental results. The predicted residual metal concentrations in the sediment were also close to experimental profiles for all of the investigated metals. Some removal overestimation was observed in the regions close to the anode, possibly due to the significant metal content bound to residual fraction.

Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments

MASI, MATTEO;CECCARINI, ALESSIO;IANNELLI, RENATO
2017-01-01

Abstract

We implemented a numerical model to simulate transport of multiple species and geochemical reactions occurring during electrokinetic remediation of metal-contaminated porous media. The main phenomena described by the model were: (1) species transport by diffusion, electromigration and electroosmosis, (2) pH-dependent buffering of H+, (3) adsorption of metals onto particle surfaces, (4) aqueous speciation, (5) formation and dissolution of solid precipitates. The model was applied to simulate the electrokinetic extraction of heavy metals (Pb, Zn and Ni) from marine harbour sediments, characterized by a heterogeneous solid matrix, high buffering capacity and aged pollution. A good agreement was found between simulations of pH, electroosmotic flow and experimental results. The predicted residual metal concentrations in the sediment were also close to experimental profiles for all of the investigated metals. Some removal overestimation was observed in the regions close to the anode, possibly due to the significant metal content bound to residual fraction.
2017
Masi, Matteo; Ceccarini, Alessio; Iannelli, Renato
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304389416311748-main.pdf

accesso aperto

Descrizione: Accepted manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 710.55 kB
Formato Adobe PDF
710.55 kB Adobe PDF Visualizza/Apri
2017 Masi etal JourHazMat Multispecies reactive transport modelling.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/825341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 47
social impact