$V(t) = e^{tG_b},\: t \geq 0,$ denotes the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset \R^3$ with dissipative boundary condition $E_{tan}- \gamma(x) (\nu \wedge B_{tan}) = 0, \gamma(x) > 0, \forall x \in \Gamma = \pa \Omega.$ We prove that if $\gamma(x)$ is nowhere equal to 1, then for every $0 < \ep \ll 1$ and every $N \in \N$ the eigenvalues of $G_b$ lie in the region $\Lambda_{\ep} \cup {\mathcal R}_N,$ where $\Lambda_{\epsilon} = \{ z \in \C:\: |\re z | \leq C_{\epsilon} (|\im z|^{\frac{1}{2} + \epsilon} + 1), \: \re z < 0\},$ ${\mathcal R}_N = \{z \in \C:\: |\im z| \leq C_N (|\re z| + 1)^{-N},\: \re z < 0\}.$

Eigenvalues for Maxwell's equations with dissipative boundary conditions.

COLOMBINI, FERRUCCIO;
2016-01-01

Abstract

$V(t) = e^{tG_b},\: t \geq 0,$ denotes the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset \R^3$ with dissipative boundary condition $E_{tan}- \gamma(x) (\nu \wedge B_{tan}) = 0, \gamma(x) > 0, \forall x \in \Gamma = \pa \Omega.$ We prove that if $\gamma(x)$ is nowhere equal to 1, then for every $0 < \ep \ll 1$ and every $N \in \N$ the eigenvalues of $G_b$ lie in the region $\Lambda_{\ep} \cup {\mathcal R}_N,$ where $\Lambda_{\epsilon} = \{ z \in \C:\: |\re z | \leq C_{\epsilon} (|\im z|^{\frac{1}{2} + \epsilon} + 1), \: \re z < 0\},$ ${\mathcal R}_N = \{z \in \C:\: |\im z| \leq C_N (|\re z| + 1)^{-N},\: \re z < 0\}.$
2016
Colombini, Ferruccio; Petkov, Vesselin; Rauch, Jeffrey
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/825366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact