The key for light-harvesting in pigment-protein complexes are molecular excitons, delocalized excited states comprising a superposition of excitations at different molecular sites. There is experimental evidence that the optical response due to such excitons can be largely affected by plasmonic nanoantennae. Here we employ a multiscale approach combining time-dependent density functional theory and polarizable classical models to study the optical behavior of the LH2 complex present in bacteria when interacting with a gold nanorod. The simulation not only reproduces the experiments but also explains their molecular origin. By tuning the chromophoric unit and selectively switching on/off the excitonic interactions, as well as by exploring different setups, we clearly show that the dramatic enhancement in the optical response, unexpectedly, is not accompanied by changes in the coherences. Instead polarization effects are dominant. These results can be used to design an optimal control of the light-harvesting process through plasmonic nanoantennae.

Control of Coherences and Optical Responses of Pigment-Protein Complexes by Plasmonic Nanoantennae

MENNUCCI, BENEDETTA
2016

Abstract

The key for light-harvesting in pigment-protein complexes are molecular excitons, delocalized excited states comprising a superposition of excitations at different molecular sites. There is experimental evidence that the optical response due to such excitons can be largely affected by plasmonic nanoantennae. Here we employ a multiscale approach combining time-dependent density functional theory and polarizable classical models to study the optical behavior of the LH2 complex present in bacteria when interacting with a gold nanorod. The simulation not only reproduces the experiments but also explains their molecular origin. By tuning the chromophoric unit and selectively switching on/off the excitonic interactions, as well as by exploring different setups, we clearly show that the dramatic enhancement in the optical response, unexpectedly, is not accompanied by changes in the coherences. Instead polarization effects are dominant. These results can be used to design an optimal control of the light-harvesting process through plasmonic nanoantennae.
Caprasecca, Stefano; Guido, Ciro Achille; Mennucci, Benedetta
File in questo prodotto:
File Dimensione Formato  
Caprasecca J. Phys. Chem. Lett.2016.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/825947
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact