In this experiment the absorption of the laser radiation impinging on polymeric films with Au nanoparticles implanted in surface was studied. By varying the polarization and the incidence angle of the laser radiation on target, the role in the laser absorption of both excitation of surface plasmons and excitation of electronic plasma waves at critical density through resonant absorption was highlighted. In conditions of p-polarized laser irradiations at 1015W/cm2 intensity, resonant absorption can be induced in films enhancing proton and ion acceleration. Plasma on-line diagnostics is based on SiC detectors. Measurements of kinetic energy of accelerated ions indicate a significant increment using p-polarized laser light with respect to no-polarized light irradiation.
Enhancement of resonant absorption through excitation of SPR
GIULIETTI, DANILO;CURCIO, ALESSANDRO;
2016-01-01
Abstract
In this experiment the absorption of the laser radiation impinging on polymeric films with Au nanoparticles implanted in surface was studied. By varying the polarization and the incidence angle of the laser radiation on target, the role in the laser absorption of both excitation of surface plasmons and excitation of electronic plasma waves at critical density through resonant absorption was highlighted. In conditions of p-polarized laser irradiations at 1015W/cm2 intensity, resonant absorption can be induced in films enhancing proton and ion acceleration. Plasma on-line diagnostics is based on SiC detectors. Measurements of kinetic energy of accelerated ions indicate a significant increment using p-polarized laser light with respect to no-polarized light irradiation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.