Battery-powered autonomous mowers are designed to reduce the need of labor for lawn mowing compared with traditional endothermic engine mowers and at the same time to abate local emissions and noise. The aim of this research was to compare autonomous mower with traditional rotary mower on a tall fescue (Festuca arundinacea) lawn under different nitrogen (N) rates. A two-way factor experimental design with three replications was adopted. In the study, fourNrates (0, 50, 100, and 150 kghaL1) and two mowing systems (autonomous mower vs. gasolinepowered walk-behind rotary mower equipped for mulching) were used. As expected, N fertilization increased turf quality. At the end of the trial, the autonomous mower increased turf density (3.2 shoots/cm2) compared with the rotary mower (2.1 shoots/cm2) and decreased average leaf width (2.1 mm) compared with the rotary mower (2.7 mm). Increased density and decreased leaf width with autonomous mowing yielded higher quality turf (7.3) compared with the rotary mower (6.4) and a lower weed incidence (6% and 9% cover for autonomous mower and rotary mower, respectively). Disease incidence and mowing quality were unaffected by the mowing system. The autonomous mower working time was set to 10 hours per day (7.8 hours for mowing and 2.2 hours for recharging) for a surface of 1296 m2. The traditional rotary mower working time for the same surface was 1.02 hours per week. The estimated primary energy consumption for autonomous mower was about 4.80 kWh/week compared with 12.60 kWh/week for gasoline-powered rotary mowing. Based on turf quality aspects and energy consumption, the use of autonomous mowers could be a promising alternative to traditional mowers.

Autonomous Mower Saves Energy and Improves Quality of Tall Fescue Lawn

GROSSI, NICOLA;FONTANELLI, MARCO;PERUZZI, ANDREA;RAFFAELLI, MICHELE;PIRCHIO, MICHEL;MARTELLONI, LUISA;FRASCONI, CHRISTIAN;CATUREGLI, LISA;GAETANI, MONICA;MAGNI, SIMONE;VOLTERRANI, MARCO
2016-01-01

Abstract

Battery-powered autonomous mowers are designed to reduce the need of labor for lawn mowing compared with traditional endothermic engine mowers and at the same time to abate local emissions and noise. The aim of this research was to compare autonomous mower with traditional rotary mower on a tall fescue (Festuca arundinacea) lawn under different nitrogen (N) rates. A two-way factor experimental design with three replications was adopted. In the study, fourNrates (0, 50, 100, and 150 kghaL1) and two mowing systems (autonomous mower vs. gasolinepowered walk-behind rotary mower equipped for mulching) were used. As expected, N fertilization increased turf quality. At the end of the trial, the autonomous mower increased turf density (3.2 shoots/cm2) compared with the rotary mower (2.1 shoots/cm2) and decreased average leaf width (2.1 mm) compared with the rotary mower (2.7 mm). Increased density and decreased leaf width with autonomous mowing yielded higher quality turf (7.3) compared with the rotary mower (6.4) and a lower weed incidence (6% and 9% cover for autonomous mower and rotary mower, respectively). Disease incidence and mowing quality were unaffected by the mowing system. The autonomous mower working time was set to 10 hours per day (7.8 hours for mowing and 2.2 hours for recharging) for a surface of 1296 m2. The traditional rotary mower working time for the same surface was 1.02 hours per week. The estimated primary energy consumption for autonomous mower was about 4.80 kWh/week compared with 12.60 kWh/week for gasoline-powered rotary mowing. Based on turf quality aspects and energy consumption, the use of autonomous mowers could be a promising alternative to traditional mowers.
2016
Grossi, Nicola; Fontanelli, Marco; Garramone, Elisa; Peruzzi, Andrea; Raffaelli, Michele; Pirchio, Michel; Martelloni, Luisa; Frasconi, Christian; Caturegli, Lisa; Gaetani, Monica; Magni, Simone; Mcelroy, J. Scott; Volterrani, Marco
File in questo prodotto:
File Dimensione Formato  
nic88-robot.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 258.41 kB
Formato Adobe PDF
258.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/828117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact