Worldwide, four people die every minute as a consequence of illnesses and accidents at work. This considerable number makes occupational safety an important research area aimed at obtaining safer and safer workplaces. This paper presents a semi-supervised learning-aided evolutionary approach to improve occupational safety by classifying workers depending on their own risk perception for the task assigned. More in detail, a semi-supervised learning phase is carried out to initialize a good population of a non-dominated sorting genetic algorithm (NSGA-II). Each chromosome of the population represents a pair of classifiers: one determines a worker's risk perception with respect to a task, the other determines the level of caution of the same worker for the same task. Learning from constraints reinforces the initial training performance. The best Pareto-optimal solution to the problem is selected by means of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The proposed framework was tested on real-world data gathered through a website purposely developed. Results showed a good performance of the obtained classifiers, thus validating the effectiveness of the proposed approach in supporting the decision-maker in critical job assignment problems, where risks are a serious threat to the workers' health.

A Semi-Supervised Learning-Aided Evolutionary Approach to Occupational Safety Improvement

COCOCCIONI, MARCO;LAZZERINI, BEATRICE;PISTOLESI, FRANCESCO
2016-01-01

Abstract

Worldwide, four people die every minute as a consequence of illnesses and accidents at work. This considerable number makes occupational safety an important research area aimed at obtaining safer and safer workplaces. This paper presents a semi-supervised learning-aided evolutionary approach to improve occupational safety by classifying workers depending on their own risk perception for the task assigned. More in detail, a semi-supervised learning phase is carried out to initialize a good population of a non-dominated sorting genetic algorithm (NSGA-II). Each chromosome of the population represents a pair of classifiers: one determines a worker's risk perception with respect to a task, the other determines the level of caution of the same worker for the same task. Learning from constraints reinforces the initial training performance. The best Pareto-optimal solution to the problem is selected by means of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The proposed framework was tested on real-world data gathered through a website purposely developed. Results showed a good performance of the obtained classifiers, thus validating the effectiveness of the proposed approach in supporting the decision-maker in critical job assignment problems, where risks are a serious threat to the workers' health.
978-1-5090-0623-6
File in questo prodotto:
File Dimensione Formato  
Cococcioni_et_al_WCCI_2016.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/828470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact