We report a measurement of the top-quark mass M(t) in the dilepton decay channel t (t) over bar-> bl('+)nu(')(l) (b)over bar l- (nu) over bar (l). Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb(-1) of p (p) over bar collisions collected with the CDF II detector, yielding a measurement of M(t)= (171.2 +/- 2.7(stat)+/- 2.9(syst)) GeV/c(2).
Measurement of the Top-Quark Mass with Dilepton Events Selected Using Neuroevolution at CDF
CIOCCI, MARIA AGNESE;DONATI, SIMONE;G. Punzi;
2009-01-01
Abstract
We report a measurement of the top-quark mass M(t) in the dilepton decay channel t (t) over bar-> bl('+)nu(')(l) (b)over bar l- (nu) over bar (l). Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb(-1) of p (p) over bar collisions collected with the CDF II detector, yielding a measurement of M(t)= (171.2 +/- 2.7(stat)+/- 2.9(syst)) GeV/c(2).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.