In this paper we develop a set of self-consistent equations describing the static and resonance characteristics of a rectangular micromirror actuated by driving a current into a multicoil inductor fabricated on the micromirror surface. Under fairly general assumptions, these equations can be solved analytically for the most common design targets, such as the driving current, deflection angle, resonance frequency, and overall dimensions. We use this solutions to optimize the micromirror geometry by minimization of a linear objective function. The tradeoffs that emerge from optimization data allow simple quantitative design of low current, low size mirrors.

Geometric optimization of magnetically actuated MEMS micromirrors

PIERI, FRANCESCO
2016-01-01

Abstract

In this paper we develop a set of self-consistent equations describing the static and resonance characteristics of a rectangular micromirror actuated by driving a current into a multicoil inductor fabricated on the micromirror surface. Under fairly general assumptions, these equations can be solved analytically for the most common design targets, such as the driving current, deflection angle, resonance frequency, and overall dimensions. We use this solutions to optimize the micromirror geometry by minimization of a linear objective function. The tradeoffs that emerge from optimization data allow simple quantitative design of low current, low size mirrors.
2016
Pieri, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/831763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact