Mutations at nucleotides 654, 705, or 745 in intron 2 of the human beta-globin gene activate aberrant 3' and 5' splice sites within the intron and prevent correct splicing of beta-globin pre-mRNA, resulting in inhibition of beta-globin synthesis and in consequence beta-thalassemia. Transfection of HeLa cells expressing the 3 thalassemic mutants with modified U7 snRNA (U7.623), containing a sequence antisense to a region between the aberrant splice sites, reduced the incorrect splicing of pre-mRNA and led to increased levels of the correctly spliced beta-globin mRNA and protein. A lentiviral vector carrying the U7.623 gene was effective in restoration of correct splicing in the model cell lines for at least 6 months. Importantly, the therapeutic value of this system was demonstrated in hematopoietic stem cells and erythroid progenitor cells from a patient with IVS2-745/IVS2-1 thalassemia. Twelve days after transduction of the patient cells with the U7.623 lentiviral vector, the levels of correctly spliced beta-globin mRNA and hemoglobin A were approximately 25-fold over background. These results should be regarded as a proof of principle for lentiviral vector-based gene therapy for beta-thalassemia.

High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA

GEMIGNANI, FEDERICA;
2003

Abstract

Mutations at nucleotides 654, 705, or 745 in intron 2 of the human beta-globin gene activate aberrant 3' and 5' splice sites within the intron and prevent correct splicing of beta-globin pre-mRNA, resulting in inhibition of beta-globin synthesis and in consequence beta-thalassemia. Transfection of HeLa cells expressing the 3 thalassemic mutants with modified U7 snRNA (U7.623), containing a sequence antisense to a region between the aberrant splice sites, reduced the incorrect splicing of pre-mRNA and led to increased levels of the correctly spliced beta-globin mRNA and protein. A lentiviral vector carrying the U7.623 gene was effective in restoration of correct splicing in the model cell lines for at least 6 months. Importantly, the therapeutic value of this system was demonstrated in hematopoietic stem cells and erythroid progenitor cells from a patient with IVS2-745/IVS2-1 thalassemia. Twelve days after transduction of the patient cells with the U7.623 lentiviral vector, the levels of correctly spliced beta-globin mRNA and hemoglobin A were approximately 25-fold over background. These results should be regarded as a proof of principle for lentiviral vector-based gene therapy for beta-thalassemia.
Vacek, Mm; Ma, H; Gemignani, Federica; Lacerra, G; Kafri, T; Kole, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/83193
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact