Using a similarity Hamiltonian renormalization procedure, we determine an effective spin-12 representation of the Bose-Hubbard model at half-integer filling and at a finite onsite interaction energy U. By means of bosonization, we are able to recast the effective Hamiltonian as that of a spin-12 XXZ magnetic chain with pertinently renormalized coupling and anisotropy parameters. We use this mapping to provide analytical estimates of the correlation functions of the Bose-Hubbard model. We then compare such results with those based on density matrix renormalization group numerical simulations of the Bose-Hubbard model for various values of U and for a number L of lattice sites as low as L∼30. We find an excellent agreement up to 10% between the output of analytical and numerical computations, even for relatively small values of U. Our analysis implies that, also at finite U, the one-dimensional Bose-Hubbard model with suitably chosen parameters may be seen as a quantum simulator of the XXZ chain. © 2013 American Physical Society.

XXZ spin-12 representation of a finite-U bose-hubbard chain at half-integer filling

ROSSINI, DAVIDE;
2013-01-01

Abstract

Using a similarity Hamiltonian renormalization procedure, we determine an effective spin-12 representation of the Bose-Hubbard model at half-integer filling and at a finite onsite interaction energy U. By means of bosonization, we are able to recast the effective Hamiltonian as that of a spin-12 XXZ magnetic chain with pertinently renormalized coupling and anisotropy parameters. We use this mapping to provide analytical estimates of the correlation functions of the Bose-Hubbard model. We then compare such results with those based on density matrix renormalization group numerical simulations of the Bose-Hubbard model for various values of U and for a number L of lattice sites as low as L∼30. We find an excellent agreement up to 10% between the output of analytical and numerical computations, even for relatively small values of U. Our analysis implies that, also at finite U, the one-dimensional Bose-Hubbard model with suitably chosen parameters may be seen as a quantum simulator of the XXZ chain. © 2013 American Physical Society.
2013
Giuliano, Domenico; Rossini, Davide; Sodano, Pasquale; Trombettoni, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/835555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact