We study the properties of an array of QED cavities coupled by nonlinear elements in the presence of photon leakage and driven by a coherent source. The main effect of the nonlinear couplings is to provide an effective cross-Kerr interaction between nearest-neighbor cavities. Additionally, correlated photon hopping between neighboring cavities arises. We provide a detailed mean-field analysis of the steady-state phase diagram as a function of the system parameters, the leakage, and the external driving and show the emergence of a number of different quantum phases. A photon crystal associated with a spatial modulation of the photon blockade appears. The steady state can also display oscillating behavior and bistability. In some regions the crystalline ordering may coexist with the oscillating behavior. Furthermore, we study the effect of short-range quantum fluctuations by employing a cluster mean-field analysis. Focusing on the corrections to the photon crystal boundaries, we show that, apart for some quantitative differences, the cluster mean field supports the findings of the simple single-site analysis. In the last part of the paper we concentrate on the possibility of building up the class of arrays introduced here, by means of superconducting circuits of existing technology. We consider a realistic choice of the parameters for this specific implementation and discuss some properties of the steady-state phase diagram. © 2014 American Physical Society.

Steady-state phase diagram of a driven QED-cavity array with cross-Kerr nonlinearities

ROSSINI, DAVIDE;
2014-01-01

Abstract

We study the properties of an array of QED cavities coupled by nonlinear elements in the presence of photon leakage and driven by a coherent source. The main effect of the nonlinear couplings is to provide an effective cross-Kerr interaction between nearest-neighbor cavities. Additionally, correlated photon hopping between neighboring cavities arises. We provide a detailed mean-field analysis of the steady-state phase diagram as a function of the system parameters, the leakage, and the external driving and show the emergence of a number of different quantum phases. A photon crystal associated with a spatial modulation of the photon blockade appears. The steady state can also display oscillating behavior and bistability. In some regions the crystalline ordering may coexist with the oscillating behavior. Furthermore, we study the effect of short-range quantum fluctuations by employing a cluster mean-field analysis. Focusing on the corrections to the photon crystal boundaries, we show that, apart for some quantitative differences, the cluster mean field supports the findings of the simple single-site analysis. In the last part of the paper we concentrate on the possibility of building up the class of arrays introduced here, by means of superconducting circuits of existing technology. We consider a realistic choice of the parameters for this specific implementation and discuss some properties of the steady-state phase diagram. © 2014 American Physical Society.
2014
Jin, Jiasen; Rossini, Davide; Leib, Martin; Hartmann, Michael J.; Fazio, Rosario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/835580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 52
social impact