We show how the phenomenon of factorization in a quantum many-body system is of collective nature. To this aim we study the quantum discord Q in the one-dimensional XY model in a transverse field. We analyze the behavior of Q at both the critical point and at the non-critical factorizing field. The factorization is found to be governed by an exponential scaling law for Q. We also address the thermal effects fanning out from the anomalies occurring at zero temperature. Close to the quantum phase transition, Q exhibits a finite-temperature crossover with universal scaling behavior, while the factorization phenomenon results in a non-trivial pattern of correlations present at low temperature. © Europhysics Letters Association 2011.

Ground-state factorization and correlations with broken symmetry

ROSSINI, DAVIDE;
2011-01-01

Abstract

We show how the phenomenon of factorization in a quantum many-body system is of collective nature. To this aim we study the quantum discord Q in the one-dimensional XY model in a transverse field. We analyze the behavior of Q at both the critical point and at the non-critical factorizing field. The factorization is found to be governed by an exponential scaling law for Q. We also address the thermal effects fanning out from the anomalies occurring at zero temperature. Close to the quantum phase transition, Q exhibits a finite-temperature crossover with universal scaling behavior, while the factorization phenomenon results in a non-trivial pattern of correlations present at low temperature. © Europhysics Letters Association 2011.
2011
Tomasello, B; Rossini, Davide; Hamma, A.; Amico, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/835601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 57
social impact