In this paper we consider the problem of classifying the isomorphism classes of extensions of degree pk of a p-adic field K, restricting to the case of extensions without intermediate fields. We establish a correspondence between the isomorphism classes of these extensions and some Kummer extensions of a suitable field F containing K. We then describe such classes in terms of the representations of Gal(F/K). Finally, for k=2 and for each possible Galois group G, we count the number of isomorphism classes of the extensions whose normal closure has a Galois group isomorphic to G. As a byproduct, we get the total number of isomorphism classes.
On wild extensions of a p-adic field
DEL CORSO, ILARIA;DVORNICICH, ROBERTO;
2017-01-01
Abstract
In this paper we consider the problem of classifying the isomorphism classes of extensions of degree pk of a p-adic field K, restricting to the case of extensions without intermediate fields. We establish a correspondence between the isomorphism classes of these extensions and some Kummer extensions of a suitable field F containing K. We then describe such classes in terms of the representations of Gal(F/K). Finally, for k=2 and for each possible Galois group G, we count the number of isomorphism classes of the extensions whose normal closure has a Galois group isomorphic to G. As a byproduct, we get the total number of isomorphism classes.File | Dimensione | Formato | |
---|---|---|---|
degree_p^2JNT.pdf
accesso aperto
Descrizione: Post-prints dell'autore
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
393.49 kB
Formato
Adobe PDF
|
393.49 kB | Adobe PDF | Visualizza/Apri |
JNT2017.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
472.38 kB
Formato
Adobe PDF
|
472.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.