A multi-level computational protocol is devised to calculate the absorption spectra in ethanol solution of a series of anthocyanidins relevant for dye-sensitized solar cells. The protocol exploits the high accuracy of second-order multi-reference perturbation theory to correct the results of the more feasible TD-DFT calculations, which were performed on hundreds of configurations sampled from molecular dynamics (MD) trajectories. The latter were purposely carried out with accurate and reliable force fields, specifically parameterized against quantum mechanical data, for each of the investigated dyes. Besides yielding maximum absorption wavelengths very close to the experimental values, the present approach was also capable of predicting reliable band shapes, even accounting for the subtle differences observed along the homolog series. Finally, the atomistic description achieved by MD simulations allowed for a deep insight into the different micro-solvation patterns around each anthocyanidin and their effects on the resulting dye’s properties. This work can be considered as a step toward the implementation of a computational protocol able to simulate the whole system formed by the organic dye and its heterogeneous embedding that constitutes dye-sensitized solar cells.

Predicting light absorption properties of anthocyanidins in solution: a multi-level computational approach

CACELLI, IVO;FERRETTI, ALESSANDRO;PRAMPOLINI, GIACOMO
2016-01-01

Abstract

A multi-level computational protocol is devised to calculate the absorption spectra in ethanol solution of a series of anthocyanidins relevant for dye-sensitized solar cells. The protocol exploits the high accuracy of second-order multi-reference perturbation theory to correct the results of the more feasible TD-DFT calculations, which were performed on hundreds of configurations sampled from molecular dynamics (MD) trajectories. The latter were purposely carried out with accurate and reliable force fields, specifically parameterized against quantum mechanical data, for each of the investigated dyes. Besides yielding maximum absorption wavelengths very close to the experimental values, the present approach was also capable of predicting reliable band shapes, even accounting for the subtle differences observed along the homolog series. Finally, the atomistic description achieved by MD simulations allowed for a deep insight into the different micro-solvation patterns around each anthocyanidin and their effects on the resulting dye’s properties. This work can be considered as a step toward the implementation of a computational protocol able to simulate the whole system formed by the organic dye and its heterogeneous embedding that constitutes dye-sensitized solar cells.
2016
Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo
File in questo prodotto:
File Dimensione Formato  
116-TCA_luce_2016.pdf

solo utenti autorizzati

Descrizione: versione editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TCA_Luce_draft_REVISED.pdf

accesso aperto

Descrizione: post-print
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/836506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact