We provide a framework for proofs of structural theorems about sets with positive Banach logarithmic density. For example, we prove that if A⊆ N has positive Banach logarithmic density, then A contains an approximate geometric progression of any length. We also prove that if A, B⊆ N have positive Banach logarithmic density, then there are arbitrarily long intervals whose gaps on A· B are multiplicatively bounded, a multiplicative version Jin’s sumset theorem. The main technical tool is the use of a quotient of a Loeb measure space with respect to a multiplicative cut.

A monad measure space for logarithmic density

DI NASSO, MAURO;
2016-01-01

Abstract

We provide a framework for proofs of structural theorems about sets with positive Banach logarithmic density. For example, we prove that if A⊆ N has positive Banach logarithmic density, then A contains an approximate geometric progression of any length. We also prove that if A, B⊆ N have positive Banach logarithmic density, then there are arbitrarily long intervals whose gaps on A· B are multiplicatively bounded, a multiplicative version Jin’s sumset theorem. The main technical tool is the use of a quotient of a Loeb measure space with respect to a multiplicative cut.
2016
DI NASSO, Mauro; Goldbring, Isaac; Jin, Renling; Leth, Steven; Lupini, Martino; Mahlburg, Karl
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/836903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact